• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Silica-based chelating resin bearing dual 8-Hydroxyquinoline moieties and its applications for solid phase extraction of trace metals from seawater prior to their analysis by ICP-MS

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1878535217301922-main.pdf (1.817Mb)
    Date
    2019
    Author
    AlSuhaimi A.O.
    AlRadaddi S.M.
    Al-Sheikh Ali A.K.
    Shraim A.M.
    AlRadaddi T.S.
    Metadata
    Show full item record
    Abstract
    Solid phase extraction (SPE) using chelating resins has been established as a convenient technique for samples pretreatment prior to trace metal analysis from complex matrices. Oxine chelating agents (e.g., 8-Hydroxyquinoline (8-HQ)) are popular moieties in the synthesis of chelating resins, due to their characteristic coordination chemistry. So far most of the reported silica-oxine chelators encompasses a single oxine molecule per spacer arm. In this work, two 8-HQ ligands have been covalently attached onto silica surface throughout a single linkage. The synthesized resin characterized with FTIR, elemental analysis and SEM. The main parameters affecting SPE procedures, such as pH, and sorption kinetics, investigated using batch experiments. The capacity exchange of the produced resin under optimized conditions was 0.219 and 0.161 mmol g−1 for Cu(II) and Mn(II) respectively. The resin packed into 10 ml standard cartridges and used with a typical SPE manifold for matrix removal prior to an ICP-MS analysis of transition metals (i.e., Cu, Cd, Ni, Pb, Zn, and Co) in seawater certified reference material samples and real samples from high saline seawater near the discharge zone of Yanbu desalination plant. The obtained results confirm the usefulness of the method.
    DOI/handle
    http://dx.doi.org/10.1016/j.arabjc.2017.10.006
    http://hdl.handle.net/10576/14286
    Collections
    • Chemistry & Earth Sciences [‎615‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video