• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear stochastic modeling for optimal dispatch of distributed energy resources in active distribution grids including reactive power

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Mehrjerdi, Hasan
    Hemmati, Reza
    Farrokhi, Elahe
    Metadata
    Show full item record
    Abstract
    This paper deals with energy storage system (ESS) in active distribution networks. The purpose is to install ESSs on the grid to minimize network losses. The problem is expressed as an optimization programming to minimize annualized cost of losses and annualized investment cost of ESSs at the same time. The constraints of the programming are given as security constraints of the network and ESS operational constraints. The network is also equipped with distributed energy resource (DER) and its uncertainty is modeled and dealt by means of stochastic programming. Different DERs including diesel, wind, and solar resources are modeled and studied. The proposed nonlinear mixed integer stochastic programming is solved by particle swarm optimization (PSO). AC power flow is adopted to consider both active and reactive powers in the model. The ESSs are modeled including both active and reactive powers. The introduced planning finds optimal location, capacity, and power for ESSs. Furthermore, the charging-discharging regime for active power of ESSs and injection-absorption pattern for reactive power of ESSs are determined. The introduced methodology is successfully simulated on a typical distribution network. The simulation results confirm that the planned strategy properly installs ESSs on the grid and minimizes network losses. The results demonstrate that the ESSs decrease network losses about 22%. Finally, considering reactive power for ESSs results in about 24% cost reduction. - 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.simpat.2019.01.005
    http://hdl.handle.net/10576/14811
    Collections
    • Electrical Engineering [‎2846‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video