• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shear behavior of RC beams strengthened with different types of FRCM: Effect of stirrups' configuration

    Thumbnail
    Date
    2019
    Author
    Wakjira, Tadesse G.
    Ebead, Usama A
    Metadata
    Show full item record
    Abstract
    Fabric-reinforced cementitious matrix, (FRCM) system has shown to be promising for the strengthening of reinforced concrete (RC) beams. However, the available experimental investigation on the shear strengthening efficacy of FRCM system is limited, particularly for deep beams. Moreover, to the authors' knowledge, no literature is available on the effect of the stirrups' configuration relative to the FRCM strips on the shear capacity of FRCM-strengthened beams. Studying this effect will aid in a better understanding of the FRCM/stirrups interaction. Thus, in this paper the experimental study on the shear behavior of RC deep beams strengthened in shear using FRCM system is presented. The test matrix involved two unstrengthened and six FRCM-strengthened deep beams tested under three-point bending. The primary test variable was the effect of stirrups' configuration relative to the FRCM strips. The other test variable includes the effect of different types of FRCM fabric (made of carbon, glass, and polyparaphenylene benzobisoxazole, PBO). Experimental results demonstrated an effective application of the FRCM in improving the load capacities of RC deep beams, up to 40.3% increase in the load capacity was achieved.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070410540&partnerID=40&md5=5a79cc3481bdee1aa4e6ff99066a5446
    DOI/handle
    http://hdl.handle.net/10576/15185
    Collections
    • Civil and Environmental Engineering [‎871‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video