• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tensile characterization of multi-ply fabric-reinforced cementitious matrix strengthening systems

    Thumbnail
    Date
    2019
    Author
    Younis, Adel
    Ebead, Usama
    Shrestha, Kshitij
    Metadata
    Show full item record
    Abstract
    Fabric reinforced cementitious matrix (FRCM) is a composite consisted of high-strength fibers impregnated in a cement-based mortar, and is commonly used for strengthening reinforced concrete and masonry structures. Comprehending the tensile behavior of FRCM is important to achieve a reliable and accurate design of FRCM strengthening systems. The current paper reports on the results of an experimental study on the tensile characterization of FRCM. A total of 40 FRCM specimens (410 50 mm, varied in thickness) were prepared and tested. The tensile characterization tests were conducted according to AC 434 guidelines using clevis-grip mechanism. The tests were used to assess the effect of two parameters: (a) fabric type (carbon/glass) and (b) number of fabric plies (one/two/three/four). The results showed that the tensile strength of carbon-FRCM specimens was approximately 1.33 times that of the glass-FRCM counterparts. Three distinct failure modes were observed, namely, (a) ductile fabric slippage in carbon-FRCM (up to three plies of fabric); (b) brittle fabric delamination in carbon-FRCM with four plies of fabric; and (c) brittle fabric rupture in glass-FRCM systems. The FRCM tensile load-carrying capacity had proportionally increased with the number of fabric plies; less significant effect (within 20%) was observed on the corresponding ultimate tensile stresses (considering the net fabric area as the effective area).
    DOI/handle
    http://dx.doi.org/10.1002/suco.201900076
    http://hdl.handle.net/10576/15479
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video