• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint Frame Synchronization and Channel Estimation: Sparse Recovery Approach and USRP Implementation

    Thumbnail
    Date
    2019
    Author
    Ozdemir, Ozgur
    Anjinappa, Chethan Kumar
    Hamila, Ridha
    Al-Dhahir, Naofal
    Guvenc, Ismail
    Metadata
    Show full item record
    Abstract
    Correlation-based techniques used for frame synchronization can suffer significant performance degradation over multi-path frequency-selective channels. In this paper, we propose a joint frame synchronization and channel estimation (JFSCE) framework as a remedy to this problem. This framework, however, increases the size of the resulting combined channel vector which should capture both the channel impulse response vector and the frame boundary offset and, therefore, its estimation becomes more challenging. On the other hand, because the combined channel vector is sparse, sparse channel estimation methods can be applied. We propose several JFSCE methods using popular sparse signal recovery algorithms which exploit the sparsity of the combined channel vector. Subsequently, the sparse channel vector estimate is used to design a sparse equalizer. Our simulation results and experimental measurements using software defined radios show that in some scenarios our proposed method improves the overall system performance significantly, in terms of the mean square error between the transmitted and the equalized symbols compared to the conventional method. - 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2905761
    http://hdl.handle.net/10576/15613
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video