• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast and precise global maximum power point tracking techniques for photovoltaic system

    Thumbnail
    Date
    2019
    Author
    Husain, Mohammed Aslam
    Jain, Abhinandan
    Tariq, Abu
    Iqbal, Atif
    Metadata
    Show full item record
    Abstract
    The multiple power peaks obtained in the power-voltage (P-V) curve of a photovoltaic string under partially shaded condition results in a complicated maximum power point tracking (MPPT) process. Under this condition, the conventional MPPT methods are not acknowledged as they result in false and slow tracking. In this study three novel global MPPT (GMPPT) methods have been proposed and validated. These are named as large and small duty step (LSDS), large and mutable duty step (LMDS) and fast and intelligent GMPPT (FI-GMPPT). The LSDS method sweeps almost the entire P-V curve using a combination of LSDS. Small duty steps are used in predefined areas near all local maximum power points of the P-V curve. LMDS is a further improved method, which uses a combination of LMDSs. The FI-GMPPT is an advance true GMPPT method which limits the area to be swept during the search process. This results in a further reduction in sweep time. In this method, the unnecessary area is skipped during the sweep process. The improved performance of the projected methods has been demonstrated and validated using MATLAB/SIMULINK and hardware implementation. - The Institution of Engineering and Technology 2019
    DOI/handle
    http://dx.doi.org/10.1049/iet-rpg.2019.0244
    http://hdl.handle.net/10576/15667
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video