• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FPGA implementation of DWT EEG data compression for wireless body sensor networks

    Thumbnail
    Date
    2017
    Author
    Elsayed, Mohamed
    Badawy, Ahmed
    Mahmuddin, Massudi
    Elfouly, Tarek
    Mohamed, Amr
    Abualsaud, Khalid
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Wireless body sensor networks (WBSN) provide an appreciable aid to patients who require continuous care and monitoring. One key application of WBSN is mobile health (mHealth) for continuous patient monitoring, acquiring vital signs e.g. EEG, ECG, etc. Such monitoring devices are doomed to be portable, i.e., batter powered, and agile to allow for patient mobility, while providing sustainable, energy-efficient hardware platforms. Hence, EEG data compression is critical in reducing the transmission power, hence increase the battery life. In this paper, we design and implement a complete hardware model based on discrete wavelet transform (DWT) for vital signs data compression and reconstruction on a field programmable gate array (FPGA) based platform. We evaluate the performance of our DWT compression FPGA implementation under different practical parameters including filter length and the compression ratio. We investigate the hardware and computational complexity of our design in terms of used resource blocks for future comparison with state-of-the-art techniques. Our results show the efficiency of the proposed hardware compression and reconstruction model at different system parameters, including the high pass filter coefficients, and DWT type, and DWT threshold. 2016 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICWISE.2016.8187756
    http://hdl.handle.net/10576/15708
    Collections
    • Computer Science & Engineering [‎2482‎ items ]
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video