• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generalized model of biological neural networks: Progressive operational perceptrons

    Thumbnail
    Date
    2017
    Author
    Kiranyaz, Serkan
    Ince, Turker
    Iosifidis, Alexandros
    Gabbouj, Moncef
    Metadata
    Show full item record
    Abstract
    Traditional Artificial Neural Networks (ANNs) such as Multi-Layer Perceptrons (MLPs) and Radial Basis Functions (RBFs) were designed to simulate biological neural networks
     
    however, they are based only loosely on biology and only provide a crude model. This in turn yields well-known limitations and drawbacks on the performance and robustness. In this paper we shall address them by introducing a novel feed-forward ANN model, Generalized Operational Perceptrons (GOPs) that consist of neurons with distinct (non-)linear operators to achieve a generalized model of the biological neurons and ultimately a superior diversity. We modified the conventional back-propagation (BP) to train GOPs and furthermore, proposed Progressive Operational Perceptrons (POPs) to achieve self-organized and depth-adaptive GOPs according to the learning problem. The most crucial property of the POPs is their ability to simultaneously search for the optimal operator set and train each layer individually. The final POP is, therefore, formed layer by layer and this ability enables POPs with minimal network depth to attack the most challenging learning problems that cannot be learned by conventional ANNs even with a deeper and significantly complex configuration.
     
    DOI/handle
    http://dx.doi.org/10.1109/IJCNN.2017.7966157
    http://hdl.handle.net/10576/15728
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video