• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generalized Theory and Analysis of Scalar Modulation Techniques for a m x n Matrix Converter

    Thumbnail
    Date
    2017
    Author
    Ali, Mohammad
    Iqbal, Atif
    Khan, M. Rizwan
    Ayyub, Mohammad
    Anees, Mohd. Anas
    Metadata
    Show full item record
    Abstract
    The basic requirement of all the scalar modulation strategies employed for matrix converter, is to define the desired output voltages. The output phase voltages, if not optimized, results in underutilization of semiconductor device ratings. For better utilization, the output reference phase voltages are modified such that the sinusoidal nature of line voltages is not altered. Multiphase drives are in consideration and much work is being done and reported on multiphase matrix converter-based system. New modulation strategies for such systems are being formulated. Most of these new strategies are based on scalar approach; which in contrast to the space vector pulse width modulation, require addition of friendly harmonics in order to achieve optimized output reference phase voltages and maximum utilization of the matrix converter semiconductor switches. On the other hand, in space vector pulse width modulation, the maximum voltages are inherently achieved. This paper presents a generalized theory, explained in mathematical as well as graphical manner, defining the optimized output reference phase voltages for any number of input and output phases, whether odd or even, for m × n matrix converter. Further, this paper also explores the Venturini method for m × n case. It is found that the method is extendable to 3 × n matrix converters only. Finally, a simple and generalized algorithm, applicable to all m × n matrix converter configurations, is discussed. Results for 3 × 5 matrix converter are validated by simulation and experimental results
    DOI/handle
    http://dx.doi.org/10.1109/TPEL.2016.2600034
    http://hdl.handle.net/10576/15951
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video