• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of corrosion damage on the flexural performance of RC beams strengthened with FRCM composites

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Elghazy, Mohammed
    El Refai, Ahmed
    Ebead, Usama
    Nanni, Antonio
    Metadata
    Show full item record
    Abstract
    This paper reports on the flexural behavior of corrosion-damaged reinforced concrete (RC) beams strengthened with different fabric-reinforced cementitious matrix (FRCM) composites. Three groups of beams were subjected to accelerated corrosion for 70, 140, and 210 days to obtain theoretical mass loss in their tensile steel bars of 10%, 20%, and 30%, respectively. The test parameters included the fabric type (PBO and carbon), the number of FRCM layers (two, three, and four), and the strengthening Scheme (end-anchored and continuously wrapped). Test results showed that FRCM composites governed the failure of the strengthened beams rather than the damage level to which the beam was subjected due to corrosion. The reported load-carrying capacities of the corrosion-damaged beams confirmed that the contribution of FRCM composites significantly offset the impact of corrosion damage on strength. FRCM-strengthened beams exhibited an increase in strength that ranged between 7 and 55% of that of the virgin beam based on the type, the axial stiffness, and the Scheme of the FRCM used. The strengthened beams showed energy absorption indices that ranged between 111 and 153% of that of the virgin beam. The theoretical formulations of ACI-549.4R-13 reasonably predicted the ultimate strengths of the end-anchored strengthened beams but underestimated those continuously anchored beams. 1 2017 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2017.08.069
    http://hdl.handle.net/10576/16034
    Collections
    • Civil and Environmental Engineering [‎882‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video