• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AC-powered multi-module high-voltage pusle-generator with sinusoidal input current for water treatment via underwater pulsed arc discharge

    Thumbnail
    Date
    2017
    Author
    Elserougi, Ahmed A.
    Abdel-Khalik, Ayman S.
    Ahmed, Shehab
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    The underwater pulsed arc discharge is one of the effective methods in water treatment applications. In pulsed arc discharge, a pulsed output in the range of 1-10 kV is typically applied across the water treatment chamber electrodes with a gap of several millimeters range between these electrodes, while the pulsed load current is above 1kA. The employed pulse generator should not only be capable of generating a high-voltage level, but also withstand the corresponding high-current stresses. In this paper, a multi-module high-voltage pulse generator is proposed for pulsed arc discharge-based water treatment system. The proposed generator consists of n synchronized groups fed from isolated dc sources, while their outputs are connected in series forming a high voltage pulsed output. Each group consists of m parallel-in parallel-out identical synchronized modules to share the current. Each module consists of a boost converter followed by a Capacitor-Diode Voltage Multiplier (CDVM) which is followed by chopping Insulated Gate Bipolar Transistor (IGBT). Each module is controlled to ensure a regulated dc output voltage across its terminals, a sinusoidal input grid current, and unity input power factor. In the proposed scheme, relatively low-voltage low-current IGBTs and diodes can be employed to generate the high-voltage high-current pulsed output. The simulation results for a 30kW system are presented to show the viability of the proposed approach.
    DOI/handle
    http://dx.doi.org/10.1109/CPE.2017.7915163
    http://hdl.handle.net/10576/16390
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video