• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A geometric approach to fault detection and isolation of multi-dimensional (n-D) systems

    Thumbnail
    Date
    2017
    Author
    Baniamerian, Amir
    Meskin, Nader
    Khorasani, Khashayar
    Metadata
    Show full item record
    Abstract
    In this work, we develop a novel fault detection and isolation (FDI) scheme for discrete-time multi-dimensional (n-D) systems for the first time in the literature. These systems represent as generalization of the Fornasini-Marchesini model II two- and three-dimensional (2-D and 3-D) systems. This is accomplished by extending the geometric FDI approach of one-dimensional (1-D) systems to n-D systems. The basic invariant subspaces including unobservable, conditioned invariant and unobservability subspaces of 1-D systems are generalized to n-D models. These extensions have been achieved and facilitated by representing an n-D model as an infinite dimensional system, and by particularly constructing algorithms that compute these subspaces in a finite and known number of steps. By utilizing the introduced subspaces the FDI problem is formulated and necessary and sufficient conditions for its solvability are provided. Sufficient conditions for solvability of the FDI problem for n-D systems using LMI filters are also developed. Moreover, the capabilities and advantages of our proposed approach are demonstrated by performing an analytical comparison with the only currently available 3-D geometric methods in the literature. 1 2016, Springer Science+Business Media New York.
    DOI/handle
    http://dx.doi.org/10.1007/s11045-016-0444-x
    http://hdl.handle.net/10576/16871
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video