• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A robust experimental-based artificial neural network approach for photovoltaic maximum power point identification considering electrical, thermal and meteorological impact

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    A-robust-experimentalbased-artificial-neural-network-approach-for-photovoltaic-maximum-power-point-identification-considering-electrical-thermal-and-meteorological-impact2020Alex.pdf (1.323Mb)
    Date
    2020-10-01
    Author
    Gowid, Samer
    Massoud, Ahmed
    Metadata
    Show full item record
    Abstract
    This paper aims to develop a robust and practical photovoltaic (PV) Maximum Power Point (MPP) identification tool developed using reliable experimental data sets. The correlations between the voltage and the current (Vmp and Imp) at maximum power from one side, and the irradiance information, electrical parameters, thermal parameters and weather parameters from another side, are investigated and compared. A comparative study between a number of input scenarios is conducted to minimize the MPP estimation error. Four scenarios based on a combination of various PV parameters using various Artificial Neural Network (ANN)-based MPP identifiers are presented, evaluated using the most common regression measure (Mean Squared Error (MSE)), improved in terms of the accuracy of the identification of MPP, and then compared. The first scenario is divided into two parts I(a) and I(b) and considers the irradiance information in addition to the highest correlated parameters with Imp and Vmp, which are circuit current (Isc) and open-circuit voltage (Voc), respectively. The second scenario considers irradiance information and the electrical parameters only. The irradiance information, in addition to the electrical, thermal, and weather parameters, are considered in the third scenario using a single layer network, while the irradiance information, in addition to the electrical, thermal, and weather parameters, are considered in the fourth scenario using a two-layer ANN network. Although the correlation study shows that the Vmp and Imp have the best correlation with the open-circuit voltage and the short circuit current (scenario I), respectively. Nonetheless, the consideration of irradiance, electrical, thermal, and weather parameters (scenario IV) yielded higher identification accuracy. The results showed a decrease in the MSE of Vmp by 74.3% (from 1.6 V to 0.411 V), and in the MSE of Imp by 95% (from 4.4e−6 A to 2.16e−7 A), respectively. In comparison to the conventional methods, the proposed concept outperforms their performances and dynamic responses. Moreover, it has the potential to eliminate the oscillations around the MPP in cloudy days. The MPP prediction performance is 99.6%, and the dynamic response is 276 ms.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086715103&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.aej.2020.06.024
    http://hdl.handle.net/10576/16939
    Collections
    • Electrical Engineering [‎2840‎ items ]
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video