• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance evaluation of time-frequency image feature sets for improved classification and analysis of non-stationary signals: Application to newborn EEG seizure detection

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Boashash, B.
    Barki, Hichem
    Ouelha, Samir
    Metadata
    Show full item record
    Abstract
    This study demonstrates that a time-frequency (TF) image pattern recognition approach offers significant advantages over standard signal classification methods that use t-domain only or f-domain only features. Two approaches are considered and compared. The paper describes the significance of the standard TF approach for non-stationary signals; TF signal (TFS) features are defined by extending t-domain or f-domain features to a joint (t, f) domain resulting in e.g. TF flatness and TF flux. The performance of the extended TFS features is comparatively assessed using Receiver Operating Characteristic (ROC) analysis Area Under the Curve (AUC) measure. Experimental results confirm that the extended TFS features generally yield improved performance (up to 19%) when compared to the corresponding t-domain and f-domain features. The study also explores a second approach based on novel TF image (TFI) features that further improves TF-based classification of non-stationary signals. New TFI features are defined and extracted from the (t, f) domain; they include TF Hu invariant moments, TF Haralick features, and TF Local Binary Patterns (LBP). Using a state-of-the-art classifier, different metrics based on confusion matrix performance are compared for all extended TFS features and TFI features. Experimental results show the improved performance of TFI features over both TFS features and t-domain only or f-domain only features, for all TF representations and for all the considered performance metrics. The experiment is validated by comparing this new proposed methodology with a recent study, utilizing the same large and complex data set of EEG signals, and the same experimental setup. The resulting classification results confirm the superior performance of the proposed TFI features with accuracy improvement up to 5.52%.
    DOI/handle
    http://dx.doi.org/10.1016/j.knosys.2017.06.015
    http://hdl.handle.net/10576/16998
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video