• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PTNet: An efficient and green data center network

    Thumbnail
    Date
    2017
    Author
    Baccour, E.
    Foufou, S.
    Hamila, R.
    Tari, Z.
    Zomaya, A.Y.
    Metadata
    Show full item record
    Abstract
    In recent years, data centers have witnessed an exponential growth for hosting hundreds of thousands of servers as well as to accommodating a very large demand for resources. To fulfill the required level of demand, some approaches tackled network aspects so to host a huge number of servers while others focused on delivering rapid services to the clients by minimizing the path length between any two servers. In general, network devices are often designed to achieve 1:1 oversubscription. Alternatively, in a realistic data center environment, the average utilization of a network could vary between 5% and 25%, and thus the energy consumed by idle devices is wasted. This paper proposes a new parameterizable data center topology, called PTNet. PTNet offers a gradual scalability that interconnects small to large networks covering different ranges of sizes. This new interconnection network provides also a small path length between any two servers even in large sized data centers. PTNet does not only reduce path length and latency, it also uses a power-aware routing algorithm which saves up to 40% of energy with an acceptable computation time. In comparison to existing solutions (e.g. Flatnet, BCube, DCell and Fat-tree), PTNet shows substantial improvements in terms of capacity, robustness, cost-effectiveness and power efficiency: this improvement reaches up to 50% in some cases.
    DOI/handle
    http://dx.doi.org/10.1016/j.jpdc.2017.03.007
    http://hdl.handle.net/10576/17142
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video