• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prognosis and Health Monitoring of Nonlinear Systems Using a Hybrid Scheme Through Integration of PFs and Neural Networks

    Thumbnail
    Date
    2017
    Author
    Daroogheh, Najmeh
    Baniamerian, Amir
    Meskin, Nader
    Khorasani, Khashayar
    Metadata
    Show full item record
    Abstract
    In this paper, a novel hybrid architecture is proposed for developing a prognosis and health monitoring methodology for nonlinear systems through integration of model-based and computationally intelligent-based techniques. In our proposed framework, the well-known particle filters (PFs) method is utilized to estimate the states as well as the health parameters of the system. Simultaneously, the system observations are predicted through an observation forecasting scheme that is developed based on neural networks (NNs) paradigms. The objective is to construct observation profiles that are to be used in future time horizons. Our proposed online training that is utilized for observation forecasting enables the NNs models to track nonergodic changes in the profiles that are present due to presence of hidden damage affecting the system health parameters. The forecasted observations are then utilized in the PFs to predict the evolution of the system states as well as the health parameters (which are considered to be time-varying due to effects of degradation and damage) into future time horizons. Our proposed hybrid architecture enables one to select health signatures for determining the remaining useful life of the system or its components not only based on the system observations but also by taking into account the system health parameters that are not physically measurable. Our proposed hybrid health monitoring methodology is constructed and developed by invoking a special framework where implementation of the observation forecasting scheme is not dependent on the structure of the utilized NNs model. In other words, changing the network structure will not significantly affect the prediction accuracy associated with the entire health prediction scheme. To verify and validate the above results and as a case study, our proposed hybrid approach is applied to predict the health condition of a gas turbine engine when it is affected by and subjected to fouling and erosion degradation and fault damages.
    DOI/handle
    http://dx.doi.org/10.1109/TSMC.2016.2597272
    http://hdl.handle.net/10576/17390
    Collections
    • Electrical Engineering [‎2849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video