• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Flywheel Energy Storage System for Fault Ride Through Support of Grid-Connected VSC HVDC-Based Offshore Wind Farms

    Thumbnail
    Date
    2016
    Author
    Daoud, Mohamed I.
    Massoud, Ahmed M.
    Abdel-Khalik, Ayman Samy
    Elserougi, Ahmed
    Ahmed, Shehab
    Metadata
    Show full item record
    Abstract
    Voltage source converter (VSC)-based high voltage DC (HVDC) transmission is considered the future of offshore power transmission. This paper aims at providing a reliable VSC-HVDC transmission system architecture between offshore wind farms and onshore grids. In this paper, a large-capacity, low-speed flywheel energy storage system (FESS) based on a squirrel cage induction machine is applied in parallel with the VSC-HVDC at the grid side converter. The FESS is dedicated for surge power (due to power flow imbalance during fault) absorption instead of being dissipated in the form of resistive losses. Since the duration of these surges is relatively small, it has been shown that the flywheel can effectively mitigate this problem. In addition to the fault ride-through support during fault conditions, the FESS is employed for power leveling functionality during normal operation. The performance parameters of the proposed approach are investigated via both simulation and experimental results. A 132-kV, 100-MW HVDC system is simulated using MATLAB/Simulink during normal and fault conditions. The proposed architecture is substantiated experimentally through a scaled down test rig with a 2-kW FESS. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TPWRS.2015.2465163
    http://hdl.handle.net/10576/17909
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video