Joint optimization of throughput and delay over PPP interfered relay networks
Abstract
Future wireless networks are expected to achieve higher data rates and ubiquitous coverage by seamless cooperation among diverse network technologies. However, it also increases the risk of co-channel interference and introduces the possibility of correlation in the aggregated interference. To address this problem, we adopt a stochastic geometry based approach by assuming that the interfering nodes are randomly distributed according to a Poisson point process (PPP). Using this approach, we derive closed-form expressions for the successful transmission probability and local delay in relay networks with correlated interference. Additionally, we find the optimal transmission probability p that jointly maximizes the successful transmission probability and minimizes the local delay. Numerical results are provided to confirm that the proposed joint optimization strategy achieves significant performance gains compared to conventional schemes.
Collections
- Electrical Engineering [2649 items ]