• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probabilistic analysis of fatigue life for asphalt mixtures using the viscoelastic continuum damage approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Sadek, Husam
    Masad, Eyad
    Al-Khalid, Hussain
    Sirin, Okan
    Metadata
    Show full item record
    Abstract
    Fatigue cracking is one of the most serious distress modes affecting the serviceability of asphalt pavement structures. The inherent variability of asphaltic materials exhibited in fatigue test results, especially for specimens acquired from field pavements, makes the task of accurately predicting the material's fatigue characteristics rather difficult. The problem is further exacerbated by the combined impact of a large number of factors, including loading conditions, material heterogeneity, ageing, construction quality and others. For these reasons, notable uncertainty is associated with the predicted fatigue life from laboratory tests based on the use of phenomenological models, which adopt deterministic input parameters despite the varying levels of uncertainty embedded in them. To investigate the effect of inherent uncertainty associated with asphalt mixtures on their fatigue life prediction, a probabilistic analysis approach is evidently needed. In this study, probabilistic analysis was applied to the fatigue life prediction model deduced from the viscoelastic continuum damage theory, based on testing various types of asphalt mixtures. The outcome of the analysis is a newly developed approach with the ability to predict the fatigue performance of asphalt mixtures at more consistent and reliable levels than current practice permits.
    DOI/handle
    http://dx.doi.org/10.1016/j.conbuildmat.2016.09.029
    http://hdl.handle.net/10576/18257
    Collections
    • Civil and Environmental Engineering [‎863‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video