• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of stator shifting to five-phase fractional-slot concentrated winding interior permanent magnet synchronous machine

    Thumbnail
    Date
    2016
    Author
    Abdel-Khalik, Ayman S.
    Ahmed, Shehab
    Massoud, Ahmed
    Metadata
    Show full item record
    Abstract
    In many applications, interior permanent magnet synchronous machines (IPMSMs) with fractional slot concentrated windings (FSCWs) are considered promising candidates in terms of higher power density and efficiency. In addition, employing a multiphase stator winding improves the drive train availability and increases reliability. This study investigates the effect of applying stator shifting to five-phase FSCW winding IPMSMs to suppress the effect of the slot harmonics by doubling the number of slots. In this case, the winding coil pitch will be two, which stands as a compromise between single-tooth and distributed winding topologies. This highly improves the air gap flux distribution, significantly reduces both rotor core and magnet eddy current losses, and increases saliency ratio and reluctance torque component. Moreover, an improved performance under fault conditions, in terms of lower torque ripple, and core and magnet losses, adds to the main advantages of this technique. Various slot/pole combinations suitable for five-phase machines are investigated. A full simulation case study based on two-dimensional finite element analysis is applied to the 20-slot/18-pole stator with single-tooth winding under both healthy and open-circuit phase fault cases. The Institution of Engineering and Technology 2016.
    DOI/handle
    http://dx.doi.org/10.1049/iet-epa.2015.0520
    http://hdl.handle.net/10576/22343
    Collections
    • Electrical Engineering [‎2846‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video