An optimized k-NN approach for classification on imbalanced datasets with missing data
Abstract
In this paper, we describe our solution for the machine learning prediction challenge in IDA 2016. For the given problem of 2-class classification on an imbalanced dataset with missing data, we first develop an imputation method based on k-NN to estimate the missing values. Then we define a tailored representation for the given problem as an optimization scheme, which consists of learned distance and voting weights for k-NN classification. The proposed solution performs better in terms of the given challenge metric compared to the traditional classification methods such as SVM, AdaBoost or Random Forests. Springer International Publishing AG 2016.
Collections
- Electrical Engineering [2649 items ]