• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learned vs. engineered features for fine-grained classification of aquatic macroinvertebrates

    Thumbnail
    Date
    2016
    Author
    Riabchenko, Ekaterina
    Meissner, Kristian
    Ahmad, Iftikhar
    Iosifidis, Alexandros
    Tirronen ,Ville
    Gabbouj, Moncef
    Kiranyazm, Serkan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Aquatic macroinvertebrate biomonitoring is an efficient way of assessment of slow and subtle anthropogenic changes and their effect on water quality. It is imperative to have reliable identification and counts of the various taxa occurring in samples as these form the basis for the quality indices used to infer the ecological status of the aquatic ecosystem. In this paper, we try to close the gap between human taxa identification accuracy (typically 90-95% on 30-40 classes of macroinvertebrates) and results of automatic fine-grained classification by introducing a novel technique based on Convolutional Neural Networks (CNN). CNN learns optimal features for macroinvertebrate classification and achieves near human accuracy when tested on 29 macroinvertebrate classes. Moreover, we perform comparative evaluation of the learned features against the hand-crafted features, which have been commonly used in classical approaches, and confirm superiority of the learned deep features over the engineered ones.
    DOI/handle
    http://dx.doi.org/10.1109/ICPR.2016.7899975
    http://hdl.handle.net/10576/22826
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video