• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Awal, Md Abdul
    Lai, Melissa M.
    Azemi, Ghasem
    Boashash, B.
    Colditz, Paul B.
    Metadata
    Show full item record
    Abstract
    Objectives Hypoxic ischaemic encephalopathy is a significant cause of mortality and morbidity in the term infant. Electroencephalography (EEG) is a useful tool in the assessment of newborns with HIE. This systematic review of published literature identifies those background features of EEG in term neonates with HIE that best predict neurodevelopmental outcome. Methods A literature search was conducted using the PubMed, EMBASE and CINAHL databases from January 1960 to April 2014. Studies included in the review described recorded EEG background features, neurodevelopmental outcomes at a minimum age of 12months and were published in English. Pooled sensitivities and specificities of EEG background features were calculated and meta-analyses were performed for each background feature. Results Of the 860 articles generated by the initial search strategy, 52 studies were identified as potentially relevant. Twenty-one studies were excluded as they did not distinguish between different abnormal background features, leaving 31 studies from which data were extracted for the meta-analysis. The most promising neonatal EEG features are: burst suppression (sensitivity 0.87 [95% CI (0.78–0.92)]; specificity 0.82 [95% CI (0.72–0.88)]), low voltage (sensitivity 0.92 [95% CI (0.72–0.97)]; specificity 0.99 [95% CI (0.88–1.0)]), and flat trace (sensitivity 0.78 [95% CI (0.58–0.91)]; specificity 0.99 [95% CI (0.88–1.0)]). Conclusion Burst suppression, low voltage and flat trace in the EEG of term neonates with HIE most accurately predict long term neurodevelopmental outcome. Significance This structured review and meta-analysis provides quality evidence of the background EEG features that best predict neurodevelopmental outcome.
    DOI/handle
    http://dx.doi.org/10.1016/j.clinph.2015.05.018
    http://hdl.handle.net/10576/22850
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video