• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determination of total flavonoid content by aluminum chloride assay: A critical evaluation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Main Article (6.368Mb)
    Date
    2021-10-31
    Author
    Amjad M., Shraim
    Ahmed, Talaat A.
    Rahman, Md Mizanur
    Hijji, Yousef M.
    Metadata
    Show full item record
    Abstract
    Flavonoids are important natural bioactive compounds. Quantitation of total flavonoid content (TFC) is widely performed using the aluminum chloride colorimetric assay against a flavonoid standard assuming equal responses from all flavonoids. The aim of this work was to critically evaluate the assay employing spike recovery in plant extracts and three authentic flavonoid standards (catechin, quercetin, and rutin). Due to the inherent variations in absorbance values at quantitation wavelengths between investigated flavonoids, the assay produced huge unacceptable differences in TFC. For trials involving AlCl3 alone in standard solutions, false-positive results were obtained (63–124%) when quercetin content was expressed as rutin equivalents. Conversely, false-negative results were found (26–42%) when rutin concentration was expressed as quercetin equivalents. Similarly, unacceptable spike recoveries were recorded (8–106%) when involving AlCl3 alone in standard solutions at all investigated wavelengths. For plant extracts, unacceptable differences (58–152%) in TFC were also obtained when either quercetin or rutin was used as a quantitation standard. When AlCl3 is used in conjunction with sodium nitrite, unacceptable high or low recoveries were noted depending on the quantitation standard used. The findings of this work provide conclusive evidence highlighting conceptual and methodological flaws in the AlCl3 colorimetric assay for the determination of TFC.
    URI
    https://www.sciencedirect.com/science/article/pii/S0023643821010859
    DOI/handle
    http://dx.doi.org/10.1016/j.lwt.2021.111932
    http://hdl.handle.net/10576/25981
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Chemistry & Earth Sciences [‎601‎ items ]
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video