• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Dynamic Power Balancing Solution for Minimization Overdesigning in Military Aircraft Power System Architecture

    Thumbnail
    Date
    2021
    Author
    Rahman, Syed
    Ghering, Jonathan
    Khan, Irfan A
    Tariq, Mohd
    Kalam, Akhtar
    Iqbal, Atif
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In the existing power system architecture of military aircraft (such as F-35), electrical loads are fed from two 270V-HVDC buses. These two HVDC buses are completely isolated from each other. In existing architecture, there is no possibility of power transfer between the two buses. This inability reflects as overdesigning of the system to meet the dynamic loads and possible power quality deterioration during operation (occurring due to unequal loading of the two HVDC buses). This paper attempts to address this inability by introducing the concept of dynamic power balancing between the buses. As military aircraft design criteria are sensitive to weight and size, the introduction of the proposed feature must not add additional weight to the system. To ensure this, the authors have studied the existing architecture and have attempted to replace the two 270V to 28V Dual-Active Bridge (DAB) converter (used for charging the 28V battery) with the proposed Triple-Active Bridge (TAB) converter. This converter must be capable of achieving power balancing in addition to the conventional 28V battery charging operation. To achieve this, a modulation strategy to achieve bidirectional power flow and soft-switching is also discussed. Simulation results verifying the feasibility of the proposed converter and control are also presented.
    DOI/handle
    http://dx.doi.org/10.1109/IECON48115.2021.9589867
    http://hdl.handle.net/10576/27426
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video