• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simple PWM technique for a three-to-five phase matrix converter

    Thumbnail
    Date
    2021
    Author
    Sayed, Mahmoud A.
    Iqbal, Atif
    Metadata
    Show full item record
    Abstract
    Multi-phase converters for more than three-phase applications have become increasingly important topics due to their distinct advantages compared with the conventional three-phase converters. This paper proposes a modified PWM switching technique for direct AC-AC three-to-five phase matrix converter to realize output voltage waveform with low total harmonic distortion (THD) and reduce the total commutation number of its bidirectional power switches in each control period, simultaneously. In order to minimize the switching loss and reduce the voltage stress on all power switches of the matrix converter, the proposed PWM switching pattern prevents any state of direct commutation and switching between the maximum and minimum grid phase voltages. This in-turn enhances the converter durability and lifetime in addition to the power density. Also, the proposed PWM switching technique has the ability to fully control the load voltage waveform and its frequency to meet the reference values. In addition, it has the ability to control the three-phase grid currents to be sinusoidal waveforms and in-phase with grid voltages for unity power factor. Moreover, it enables voltage transfer ratio of 78.86% of the source input voltage. A laboratory prototype has been carried out in order to investigate the effectiveness of the proposed switching technique.
    DOI/handle
    http://dx.doi.org/10.1002/2050-7038.12860
    http://hdl.handle.net/10576/27622
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video