• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Level-Shifted PWM Technique for Equal Power Sharing among Quasi-Z-Source Modules in Cascaded Multilevel Inverter

    Thumbnail
    Date
    2021
    Author
    Meraj, Mohammad
    Rahman, Syed
    Iqbal, Atif
    Ben-Brahim, Lazhar
    Abu-Rub, Haitham A.
    Metadata
    Show full item record
    Abstract
    Phase-shifted pulsewidth modulation (PS-PWM) is a well-known switching technique for quasi-Z-source (qZS)-based cascaded multilevel inverters (qZS-CMI). PS-PWM ensures equal power distribution (among operating modules) and equal switchings in all the semiconductors of the every given module; however, this technique suffers from higher number of switchings. On the other hand, level-shifted pulsewidth modulation (LS-PWM) ensures optimal switching but suffers from uneven distribution of power among the all the operating modules and also all the semiconductors of the same module of qZSI. This article proposes a novel switching technique which combines the advantages of both PS-PWM and LS-PWM, such as equal power distribution (among operating modules) and optimal switching sequence along with equal switch utilization. The proposed method is phase opposed disposed PS-PWM. This article details the switching technique along with switching loss analysis and compares it with the PS-PWM technique to show its superiority. Simulation results are carried out to study the cascaded multilevel inverter (CMLI) performance. Experimental prototype is developed to validate the performance of the proposed modulation.
    DOI/handle
    http://dx.doi.org/10.1109/TPEL.2020.3018398
    http://hdl.handle.net/10576/27626
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video