• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Level Shifted PWM Technique for Unequal and Equal Power Sharing in Quasi Z-Source Cascaded Multilevel Inverter for PV Systems

    Thumbnail
    Date
    2021
    Author
    Meraj, Mohammad
    Rahman, Syed
    Iqbal, Atif
    Al Emadi, Nasser
    Metadata
    Show full item record
    Abstract
    Conventional phase-shifted pulsewidth modulation (PS-PWM) is a usual switching technique for Z-source/quasi-Z-Source (qZS)-based cascaded multilevel inverters (CMIs) (qZS-CMIs). The PS-PWM scheme causes higher switching losses and creates an electromagnetic interference (EMI) problem for higher number of cascaded modules. To address these issues, a novel, modified level-shifted PWM (LS-PWM) technique is proposed with the aim of obtaining equal power from cascaded modules under abnormal conditions. The direct use of the alternate phase-opposed disposed PWM (APOD-PWM) results in unequal power sharing between the qZSI modules, under all operating conditions. An effective carrier rotation is incorporated in the conventional APOD-PWM to make equal power sharing between the qZSI modules. The proposed scheme is an excellent solution for photovoltaic (PV) systems to address the problem of partial or complete shading, temperature variation, PV module failure, and dust accumulation on the PV panels. Furthermore, the relationship between PS-PWM and APOD-PWM is geometrically obtained, which indicates that the proposed modulation scheme gives higher voltage gain over LS-PWM and PS-PWM techniques. In addition, detailed switching loss analysis for the proposed PWM methods is added to validate low-switching losses, and thus high efficiency. The MATLAB Simulink simulations are presented to verify the proposed modulation. An experimental prototype is developed, and the experimental outcomes validate the improved performance of the multilevel qZSI with proposed modulation.
    DOI/handle
    http://dx.doi.org/10.1109/JESTPE.2019.2952206
    http://hdl.handle.net/10576/27635
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video