• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multimodule DC-DC Converters for High-Voltage High-Power Renewable Energy Sources

    Thumbnail
    Date
    2019
    Author
    Elmenshawy, M.
    Massoud, Ahmed
    Metadata
    Show full item record
    Abstract
    High-voltage high-power DC-DC converters are an essential requirement for constructing HVDC networks since voltage levels, as well as the network configuration, are not standardized. Accordingly, this paper focuses on multimodule DC-DC converter-based Dual Active Bridge (DAB) for high-voltage high-power renewable energy sources such as PV plant and wind farms. The modularity concept is applied to the entire stage and not only limited to the power electronic stage. In addition, higher switching frequency in the AC link can be achieved, which would result in significant weight and size reduction. To study the dynamic behavior of such converters, the small-signal analysis for a four-module Input-Series Input-Parallel Output-Series (ISIPOS) DC-DC converter along with its frequency response is delivered. In addition, sensitivity analysis for the ISIPOS converter is presented to study the behavior of the converter when its parameters change. Moreover, different multimodule DC-DC converter-based DAB scenarios for different purposes are presented. To clarify, the main aim of this paper is studying the small-signal analysis of a four-module ISIPOS DC-DC converter as well as presenting different scenarios for multimodule DC-DC converters. The two studied scenarios can be summarized in: connecting a high-voltage high-power PV park to a high-voltage transmission and connecting two HVDC transmission with different voltage levels.
    DOI/handle
    http://dx.doi.org/10.1109/SGRE46976.2019.9020690
    http://hdl.handle.net/10576/28748
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A comprehensive review of the cyber-attacks and cyber-security on load frequency control of power systems 

      Mohan, A.M.; Meskin, Nader; Mehrjerdi, H. ( MDPI AG , 2020 , Article Review)
      Power systems are complex systems that have great importance to socio-economic development due to the fact that the entire world relies on the electric network power supply for day-to-day life. Therefore, for the stable ...
    • Thumbnail

      Control of doubly-fed induction machine storage system for constant charging/discharging grid power using artificial neural network 

      Abdel-Khalik, A.S.; Elserougi, A.; Massoud, Ahmed; Ahmed, S. ( IET , 2012 , Conference)
      A large-capacity low-speed flywheel energy storage system based on a doubly-fed induction machine (DFIM) basically consists of a wound-rotor induction machine, and a back-to-back converter for rotor excitation. It has been ...
    • Thumbnail

      A stationary frame current control for inverter-based distributed generation with sensorless active damped LCL filter using Kalman filter 

      El-Deeb, H.M.; Elserougi, A.; Abdel-Khalik, A.S.; Ahmed, S.; Massoud, Ahmed ( Institute of Electrical and Electronics Engineers Inc. , 2014 , Conference)
      Due to the large variety of renewable power sources, power electronics play an important role in energy conversion. Different power converter topologies are used to interface distributed power generation systems (DPGS) ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video