• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Conceptual study of AC-powered switched non-polarized-capacitors based solid-state bipolar Marx pulse generator

    Thumbnail
    Date
    2017
    Author
    Elserougi, A.A.
    Shafik, Z.
    Massoud, Ahmed
    Ahmed, S.
    Metadata
    Show full item record
    Abstract
    The conventional unipolar Marx generator can be employed for bipolar pulsed electric field by adding a high-voltage H-bridge at the load side which necessitates stacked switches. Alternatively, bipolar Marx generator with low-voltage switches can be employed. The existing bipolar Marx generators are typically fed from dc supplies, where polarized capacitors are employed. The capacitance of involved capacitors is selected such that the total energy stored in the generator's capacitors is higher than the bipolar pulse energy. As a result, polarized capacitors with relatively high capacitances are required. In addition, a high number of controlled switches per stage are required (at least four switches per stage). In this paper, a new solid-state bipolar Marx pulse generator with only three controlled switches per stage is proposed. The proposed generator is fed from sinusoidal/square ac voltage and non-polarized capacitors with low capacitance are employed. The proposed bipolar Marx-generator can be used effectively with resistive loads for exponential pulse generation. A detailed illustration of the proposed approach is presented and a discussion, to elucidate the differences between the proposed pulse generator and the other existing ones, are presented. Simulation results for the proposed pulse generator are presented to validate the concept. Finally, experimental results have been obtained from a low-voltage model of the proposed generator.
    DOI/handle
    http://dx.doi.org/10.1109/TDEI.2017.006459
    http://hdl.handle.net/10576/28760
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video