• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An asymmetrical six-phase induction motor drive based on nine-arm Modular Multilevel Converter (9AMMC) with circulating current suppression

    Thumbnail
    Date
    2015
    Author
    Elserougi, A.A.
    Abdel-Khalik, A.S.
    Massoud, Ahmed
    Ahmed, S.
    Metadata
    Show full item record
    Abstract
    Asymmetrical six-phase (dual three-phase) induction motors have received significant attention in high power medium voltage drive applications. Normally, two three-phase voltage source converters are used to supply the six-phase motor. Multilevel inverters are preferred in medium voltage applications to provide a stepped output voltage waveform that not only reduces dv/dt stresses but also provides a better output current waveform. This also improves the machine torque quality and enhances the overall drive performance. Modular Multilevel Converter (MMC) is one of the promising converters in medium and high voltage applications. Instead of using two MMCs with six arms each to feed the six-phase motor, this paper proposes a new nine-arm MMC (9A-MMC) topology to drive such a motor. The proposed approach reduces the number of required dc capacitors, semiconductor devices and their gate driver circuits, which reduces system complexity and cost. The complete system analysis is presented along with the required filter to suppress the circulating currents, which is a critical issue in MMC converters, is also considered. Simulation results for the conventional and proposed systems are compared and results show the effectiveness of the proposed system.
    DOI/handle
    http://dx.doi.org/10.1109/EPECS.2015.7368543
    http://hdl.handle.net/10576/28762
    Collections
    • Electrical Engineering [‎2849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video