• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-term probabilistic building load forecasting based on feature integrated artificial intelligent approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Liu, R.
    Chen, T.
    Sun, G.
    Muyeen, S. M.
    Lin, S.
    Mi, Y.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Due to various influential factors that lead to instability and volatility of the building load, short-term building load forecasting is a gruelling task. This paper proposes a hybrid short-term building load probability density forecasting method based on Orthogonal Maximum Correlation Coefficient (OMCC) feature selection and Convolutional Gated Recurrent Unit (CGRU) quantile regression. Firstly, the optimal feature set is selected by OMCC. Then Value-At-Risk (VAR) is determined from fitting Copula model to construct indicator variables. Next, the data from the feature selection stage is used as input to the quantile regression model of CGRU for building load forecasting. Finally, the building load probability density distribution is fitted by kernel density estimation. The forecasting performance is evaluated using Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Mean Arctan Absolute Percentage Error (MAAPE). Simulation results across all three buildings validate the reliability of the proposed model for the short-term building-level probabilistic load forecasting tasks.
    DOI/handle
    http://dx.doi.org/10.1016/j.epsr.2022.107802
    http://hdl.handle.net/10576/28889
    Collections
    • Electrical Engineering [‎2846‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video