• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cunws/rgo Based Transparent Conducting Electrodes As A Replacement Of Ito In Opto-electric Devices

    Thumbnail
    View/Open
    qfarc.2014.ITPP0939.pdf (98.34Kb)
    Date
    2014
    Author
    Sehpar Shikoh, Ali
    Zhu, Zhaozhao
    Mankowski, Trent
    Touati, Farid
    Benammar, Mohieddine
    Mansuripur, Masud
    Falco, Charles M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Transparent electrodes that conduct electrical current and allow light to pass through are widely used as the essential component in various opto-electric devices such as light emitting diodes, solar cells, photodectectors and touch screens. Currently, Indium Tin oxide (ITO) is the best, commercially available transparent conducting electrode (TCE). However, ITO is too expensive owing high cost on indium. Furthermore ITO thin films are too brittle to be used in flexible devices. To fulfill the demand of TCEs for wide range of applications, high performance ITO alternatives are required. Herein we demonstrate an approach for the successful, solution based synthesis of high aspect ratio copper nanowires, which were later combined with reduced graphene oxide (rGO), in order to produce smooth thin film TCEs on both glass and flexible substrate. Structure and component characterization for these electrodes was carried out through Four Probe, Spectrophotometer, Scanning electron Microscope (SEM), Transmission Electron Microscope (TEM) and Atomic Field Microscopy (AFM). In addition to the morphological and electrical characterization, these samples were also tested for their durability by carrying out experiments that involved exposure to various environmental conditions and electrode bending. Our fabricated transparent electrodes exhibited high performance with a transmittance of 91.6% and a sheet resistance of 9 O/sq. Furthermore, the electrodes showed no notable loss in performance during the durability testing experiments. Such results make them as replacement for indium tin oxide as a transparent electrode and presents a great opportunity to accelerate the mass development of devices like high efficiency hybrid silicon photovoltaics via simple and rapid soluble processes.
    URI
    https://doi.org/10.5339/qfarc.2014.ITPP0939
    DOI/handle
    http://hdl.handle.net/10576/29641
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video