• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Event-triggered particle filtering and Cramer-Rao lower bound computation

    Thumbnail
    Date
    2021
    Author
    Sadeghzadeh-Nokhodberiz, N.
    Davoodi, M.
    Meskin, Nader
    Metadata
    Show full item record
    Abstract
    In this article, an event-triggered particle filtering method is presented to estimate the states of stochastic nonlinear systems with the ultimate goal to reduce the information exchange in networked systems. In the event-triggered estimation, measurements are transferred to an estimator only if certain event conditions are satisfied. Using these event-triggered measurements leads to non-Gaussianity of the conditional posterior distribution in minimum mean square error estimators even in the presence of Gaussian process and measurement noises. Therefore, in this article, a particle filter–based method is employed to solve the non-Gaussianity issue in nonlinear systems due to event-triggered measurements. In the proposed scheme, when no information is sent to the estimator, particles weight update role is modified according to the event-triggering probability density function. To evaluate the performance of the proposed state estimation scheme, the conditional posterior Cramér–Rao lower bound is obtained using Monte Carlo simulations. The bound is also computed for nonlinear Gaussian systems with a Gaussian event-triggering mechanism as a special case. Finally, the efficiency of the proposed method is demonstrated for a networked interconnected four-tank system through simulation and a comparison study is also provided.
    DOI/handle
    http://dx.doi.org/10.1177/0959651820949323
    http://hdl.handle.net/10576/29754
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video