• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Platoon Transitional Maneuver Control System: A Review

    Thumbnail
    Date
    2021
    Author
    Badnava, S.
    Meskin, Nader
    Gastli, A.
    Al-Hitmi, M.A.
    Ghommam, J.
    Mesbah, M.
    Mnif, F.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Connectivity and autonomy are considered two of the most promising technologies to improve mobility, fuel consumption, travel time, and traffic safety in the automated transportation industry. These benefits can be realized through vehicle platooning. A vehicle platoon is composed of a group of connected automated vehicles (CAVs) traveling together at consensual speed, following the leading vehicle (leader) while maintaining a prespecified inter-vehicle distance. This paper reviews the different existing control techniques associated with the transitional platoon maneuvers such as merge/split and lane change. Different longitudinal and lateral vehicle dynamics that are mainly used in the transitional platoon maneuvers are discussed. The most used control algorithms for both longitudinal and lateral control used for transitional platoon maneuvers are reviewed and the advantages and limitations of each control strategy are discussed. The most recent articles on platoon control maneuvers have been analyzed based on the proposed control algorithm, homogeneously or heterogeneously of platoon members, type of platoon maneuver, the aim of control problem, type of implementation, and used simulation tools. This paper also discusses different trajectory planning techniques used in lateral motion control and studies the most recent research related to trajectory planning for automated vehicles and summarizes them based on the used trajectory planning technique, platoon or/and lane change, the type of traffic, and the cost functions. Finally, this paper explores the open issues and directions for future research.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3089615
    http://hdl.handle.net/10576/29762
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Enhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimization 

      Hasanien, H. M.; Turky, R. A.; Tostado-Veliz, M.; Muyeen, S.M.; Jurado, F. ( Elsevier Ltd , 2022 , Article)
      This article presents a novel enhanced block-sparse adaptive Bayesian algorithm (EBSABA) to fully control proportional-integral (PI) controllers of superconducting magnetic energy storage (SMES) units. The main goal is to ...
    • Thumbnail

      Rotor Flux-Oriented Control of Three-Phase Induction Motor Using Sliding Mode Controller and Rotor Flux Estimator 

      Sabbir, Ahmad H.M.; Meraj, M.; Iqbal, A.; Meskin, Nader ( Springer Science and Business Media Deutschland GmbH , 2021 , Conference)
      The work focuses on implementing rotor flux-oriented control (RFOC) for controlling the rotational speed and torque of a three-phase squirrel cage induction motor (IM). The speed controller has been implemented based on ...
    • Thumbnail

      Adaptive cooperative control of nonlinear multi-agent systems with uncertain time-varying control directions and dead-zone nonlinearity 

      Shahriari-kahkeshi, M.; Meskin, Nader ( Elsevier B.V. , 2021 , Article)
      This paper investigates the development of an adaptive cooperative control scheme for the consensus of uncertain nonlinear multi-agent systems subjected to uncertain time-varying control direction, disturbances, and dead-zone ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video