• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Bayesian approach for model identification of LPV systems with uncertain scheduling variables

    Thumbnail
    Date
    2015
    Author
    Abbasi, F.
    Mohammadpour, J.
    Toth, R.
    Meskin, Nader
    Metadata
    Show full item record
    Abstract
    This paper presents a Gaussian Process (GP) based Bayesian method that takes into account the effect of additive noise on the scheduling variables for identification of linear parameter-varying (LPV) models in input-output form. The proposed method approximates the noise-free coefficient functions by a local linear expansion on the observed scheduling variables. Therefore, additive noise on the scheduling variables is reconstructed as a corrective term added to the output noise that is proportional to the squared gradient obtained from the posterior of the Gaussian Process. An iterative procedure is given so that the obtained solution converges to the best estimation of the coefficient functions according to the given measure of fitness. Moreover, the expectation and covariance functions estimated by GP are modified for the noisy scheduling variable case to include the noise contribution on the estimated expectation and covariance functions. The model training procedure identifies noise level in the measurements including outputs and scheduling variables by estimating the noise variances, as well as other defined hyperparameters. Finally, the performance of the proposed method is compared to the standard GP approach through a numerical example. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/CDC.2015.7402326
    http://hdl.handle.net/10576/29805
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video