• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An IV-SVM-based approach for identification of state-space LPV models under generic noise conditions

    Thumbnail
    Date
    2015
    Author
    Rizvi, S.Z.
    Mohammadpour J.
    Tcth, R.
    Meskin, Nader
    Metadata
    Show full item record
    Abstract
    This paper presents a nonparametric identification method for state-space linear parameter-varying (LPV) models using a modified support vector machine (SVM) approach. While most LPV identification schemes in the state-space form fall under the general category of parametric methods, regularization-based SVMs provide a viable alternative to model scheduling dependencies, without the need of specifying the dependency structure and with an attractive bias-variance trade-off. In this paper, a solution is proposed for nonparametric identification of LPV state-space models in terms of least-squares SVMs (LS-SVM) and is then extended in a way that the proposed estimation is robust to errors in the noise model estimation. The so-called instrumental variables (IV) method has been used in linear system identification for quite some time, and has recently seen its application in the identification of both nonlinear and LPV systems in the input-output (IO) form. The IV method reduces the bias in estimated LPV state-space models in case the noise model is not estimated properly or is unknown. In the proposed method of this paper, the attractive bias-variance trade-off properties of LS-SVMs are combined with statistical properties of IV-based methods to give robust estimates of the functional dependencies. Numerical examples are provided to compare the performances of the proposed IV-based technique with the LS-SVM-based LPV model identification methods. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/CDC.2015.7403385
    http://hdl.handle.net/10576/29807
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video