• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Output-feedback model predictive control of biological phenomena modeled by S-systems

    Thumbnail
    Date
    2012
    Author
    Meskin, Nader
    Nounou, H.
    Nounou, M.
    Datta, A.
    Dougherty, E.R.
    Metadata
    Show full item record
    Abstract
    Recent years have witnessed extensive research activity in modeling biological phenomena as well as in developing intervention strategies for them. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. One of the main challenges for the development of intervention strategies for biological phenomena is that usually not all the variables (for instance, metabolite concentrations) are available for measurement. This can be due to the difficulty of or the cost associated with obtaining these measurements. Moreover, the available measurements may be noisy with a low sampling rate. In this paper, an intervention strategy is proposed for the S-system model in the presence of partial noisy measurements. In the proposed approach, first a stochastic nonlinear estimation algorithm, namely the unscented Kalman filter, is utilized for estimating the unmeasured variables of the S-system. Then, based on the estimated variables, a model predictive control algorithm is developed to guide the target variables to their desired values. The proposed intervention strategy is applied to the glycolytic-glycogenolytic pathway and the simulation result presented demonstrates the effectiveness of the proposed scheme. 2012 AACC American Automatic Control Council).
    DOI/handle
    http://dx.doi.org/10.1109/acc.2012.6314815
    http://hdl.handle.net/10576/29834
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video