• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generalized area spectral efficiency of wireless ad-hoc networks over Rayleigh fading

    Thumbnail
    Date
    2020
    Author
    Zhu J.
    Zhang L.
    Yang H.-C.
    Hasna , Mazen
    Metadata
    Show full item record
    Abstract
    Generalized area spectral efficiency (GASE) was introduced as a metric to quantify the spectral utilization efficiency of wireless transmissions. Unlike other performance metrics, GASE takes into account the spatial property of wireless transmissions. In this paper, we extend the research on GASE from link level to network level. In particular, we consider a wireless ad-hoc network with Poisson distributed nodes. We take into account the co-channel interference and derive the generic closed-form moment generating function (MGF) expression of aggregate interference in such network. With the interference statistics, we calculate the ergodic capacity, affected area, and GASE of the network over Rayleigh fading channels. Furthermore, we analyze the effect of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism on the GASE performance of such network. Finally, we propose a new cognitive paradigm that allows the secondary transmitters that are located outside the primary affected area to transmit. With this paradigm, we can achieve high ergodic capacity while effectively utilizing the space-spectrum resource of primary network. Besides, through mathematical analysis and numerical examples, we show that GASE provides a new perspective on transmission power selection and secondary network optimization.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089297171&doi=10.1109%2fJCN.2020.000002&partnerID=40&md5=816facaa068a495b6568a8cd539b600c
    DOI/handle
    http://dx.doi.org/10.1109/JCN.2020.000002
    http://hdl.handle.net/10576/30453
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video