Modeling Heterogeneous Cellular Networks Interference Using Poisson Cluster Processes
Abstract
Future mobile networks are converging toward heterogeneous multitier networks, where macro-, pico-, and femto-cells are randomly deployed based on user demand. A popular approach for analyzing heterogeneous networks (HetNets) is to use stochastic geometry and treat the location of BSs as points distributed according to a homogeneous Poisson point process (PPP). However, a PPP model does not provide an accurate model for the interference when nodes are clustered around highly populated areas. This motivates us to find better ways to characterize the aggregate interference when transmitting nodes are clustered following a Poisson cluster process (PCP) while taking into consideration the fact that BSs belonging to different tiers may differ in terms of transmit power, node densities, and link reliabilities. To this end, we consider K-tier HetNets and investigate the outage probability, the coverage probability, and the average achievable rate for such networks. We compare the performance of HetNets when nodes are clustered and otherwise. By comparing these two types of networks, we conclude that the fundamental difference between a PPP and a PCP is that, for a PPP, the number of simultaneously covered mobiles and the network capacity linearly increase with K. However, for a PCP, the improvements in the coverage and the capacity diminish as K grows larger, where the curves saturate at some point. Based on these observations, we determine the scenarios that jointly maximize the average achievable rate and minimize the outage probability.
Collections
- Electrical Engineering [2649 items ]
Related items
Showing items related by title, author, creator and subject.
-
Self-organized Operational Neural Networks with Generative Neurons
Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ... -
Wireless Network Slice Assignment with Incremental Random Vector Functional Link Network
He, Yu Lin; Ye, Xuan; Cui, Laizhong; Fournier-Viger, Philippe; Luo, Chengwen; Huang, Joshua Zhexue; Suganthan, Ponnuthurai N.... more authors ... less authors ( IEEE Computer Society , 2022 , Article)This paper presents an artificial intelligence-assisted network slice prediction method, which utilizes a novel incremental random vector functional link (IRVFL) network to deal with the wireless network slice assignment ... -
A novel multi-hop body-To-body routing protocol for disaster and emergency networks
Ben Arbia, Dhafer; Alam, Muhammad Mahtab; Attia, Rabah; Ben Hamida, Elye ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference Paper)In this paper, a new multi-hop routing protocol (called ORACE-Net) for disaster and emergency networks is proposed. The proposed hierarchical protocol creates an ad-hoc network through body-To-body (B2B) communication ...