• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint optimal threshold-based relaying and ml detection in network-coded two-way relay channels

    Thumbnail
    Date
    2012
    Author
    Zeng X.N.
    Ghrayeb A.
    Hasna , Mazen
    Metadata
    Show full item record
    Abstract
    In this paper, we address the problem of joint optimal threshold-based relaying and maximum likelihood (ML) detection in network-coded cooperative systems. The purpose of using threshold-based relaying is to circumvent the impact of error propagation, which could lead to degrading the system diversity. For simplicity, we consider a simple network comprising two source nodes and one relay node. The relay operates in the decode-and-forward (DF) mode and employs binary network coding. The communication between the two source nodes is bidirectional, resulting in a two-way relay channel. We assume binary phase shift keying (BPSK) signaling. For a given log-likelihood ratio (LLR)-based threshold used at the relay, we derive the ML detector at the destination assuming that the destination has full knowledge of the locations of the blocked bits at the relay. We then derive an expression for the corresponding end-to-end (E2E) bit error rate (BER) performance, which is used to find the optimal threshold. We also derive two practical discontinuous transmission detectors at the destination for the purpose of identifying whether the relay is forwarding or not. The performance of one of the detectors is similar to that when the destination knows the locations of the blocked bits, whereas the performance of the other detector suffers some performance degradation. We present several numerical examples that illustrate the efficacy of the proposed scheme as compared to existing schemes.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866740318&doi=10.1109%2fTCOMM.2012.071812.110739&partnerID=40&md5=401cf87977e8c40f4d43468bd3c7db68
    DOI/handle
    http://dx.doi.org/10.1109/TCOMM.2012.071812.110739
    http://hdl.handle.net/10576/30537
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Partial relay selection in underlay cognitive networks with fixed gain relays 

      Hussain S.I.; Alouini M.-S.; Hasna , Mazen; Qaraqe K. ( IEEE , 2012 , Conference)
      In a communication system with multiple cooperative relays, selecting the best relay utilizes the available spectrum more efficiently. However, selective relaying poses a different problem in underlay cognitive networks ...
    • Thumbnail

      Area spectral efficiency of cooperative network with opportunistic relaying 

      Zhang L.; Hasna , Mazen; Yang H.-C. ( IEEE , 2012 , Conference)
      In this paper, we investigate the area spectral efficiency (ASE) in a three-node cooperative network with opportunistic relaying. On one hand, in conventional cellular network, ASE is defined to be the average data rate ...
    • Thumbnail

      Sequential random selection relaying for energy efficient wireless sensor networks 

      Mousavifar S.A.; Khattab T.; Hasna , Mazen ( IEEE , 2010 , Conference)
      In a wireless sensor network with relaying capability, intermediate relay nodes are with limited energy budget. To maximize lifetime of relay nodes, selective relay strategies, requiring full channel state information ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video