• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time phonocardiogram anomaly detection by adaptive 1D Convolutional Neural Networks

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Kiranyaz, Mustafa Serkan
    Zabihi M.
    Rad A.B.
    Ince T.
    Hamila R.
    Gabbouj M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The heart sound signals (Phonocardiogram ? PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To determine the state-of-the-art PCG classification algorithm, 48 international teams competed in the PhysioNet (CinC) Challenge in 2016 over the largest benchmark dataset with 3126 records with the classification outputs, normal (N), abnormal (A) and unsure ? too noisy (U). In this study, our aim is to push this frontier further; however, we focus deliberately on the anomaly detection problem while assuming a reasonably high Signal-to-Noise Ratio (SNR) on the records. By using 1D Convolutional Neural Networks trained with a novel data purification approach, we aim to achieve the highest detection performance and real-time processing ability with significantly lower delay and computational complexity. The experimental results over the high-quality subset of the same benchmark dataset show that the proposed approach achieves both objectives. Furthermore, our findings reveal the fact that further improvements indeed require a personalized (patient-specific) approach to avoid major drawbacks of a global PCG classification approach.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087283369&doi=10.1016%2fj.neucom.2020.05.063&partnerID=40&md5=df9b732effb714b7f914a0ba280bdddd
    DOI/handle
    http://dx.doi.org/10.1016/j.neucom.2020.05.063
    http://hdl.handle.net/10576/30603
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection 

      Boashash B.; Azemi G.; Ali Khan N. ( Elsevier Ltd , 2015 , Article)
      This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). ...
    • Thumbnail

      Drone-type-Set: Drone types detection benchmark for drone detection and tracking 

      AlDosari, Khloud; Osman, AIbtisam; Elharrouss, Omar; Al-Maadeed, Somaya; Chaari, Mohamed Zied ( Institute of Electrical and Electronics Engineers Inc. , 2024 , Conference)
      The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, ...
    • Thumbnail

      Detection of Appliance-Level Abnormal Energy Consumption in Buildings Using Autoencoders and Micro-moments 

      Himeur, Yassine; Alsalemi, Abdullah; Bensaali, Faycal; Amira, Abbes ( Springer Science and Business Media Deutschland GmbH , 2022 , Conference)
      The detection of anomalous energy usage could help significantly in signaling energy wastage and identifying faulty appliances, especially if the individual power traces are analyzed. To that end, this paper proposes a ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video