• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models

    Thumbnail
    Date
    2019
    Author
    Zabihi M.
    Kiranyaz, Mustafa Serkan
    Gabbouj M.
    Metadata
    Show full item record
    Abstract
    Sepsis is caused by the dysregulated host response to infection and potentially is the main cause of 6 million death annually. It is a highly dynamic syndrome and therefore the early prediction of sepsis plays a key role in reducing its high associated mortality. However, this is a challenging task because there is no specific and accurate test or scoring system to perform early prediction. In this paper, we present a systematic approach for sepsis prediction. We also propose a new set of features to model the missingness in clinical data. The pipeline of the proposed method comprises three major components: feature extraction, feature selection, and classification. In total, 407 features are extracted from the clinical data. Then, five different sets of features are selected using a wrapper feature selection algorithm based on XGboost. The selected features are extracted from both valid and missing clinical data. Afterwards, an ensemble model consists of five XGboost models is used for sepsis prediction. The proposed algorithm is ranked officially as third place in the PhysioNet/Computing in Cardiology Challenge 2019 with an overall utility score of 0.339 on the unseen test dataset (our team name: Separatrix).
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081132099&doi=10.23919%2fCinC49843.2019.9005564&partnerID=40&md5=116b0f4e3bb5b51212e4bda62bae1ae4
    DOI/handle
    http://dx.doi.org/10.23919/CinC49843.2019.9005564
    http://hdl.handle.net/10576/30619
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video