• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and performance of large-scale cost-effective environment-friendly nanostructured thermoelectric materials

    Thumbnail
    View/Open
    nanomaterials-11-01091.pdf (5.064Mb)
    Date
    2021
    Author
    Jaldurgam F.F.
    Ahmad Z.
    Touati F.
    Metadata
    Show full item record
    Abstract
    Thermoelectricity is a promising technology that directly converts heat energy into electric-ity and finds its use in enormous applications. This technology can be used for waste heat recovery from automobile exhausts and industrial sectors and convert the heat from solar energy, especially in hot and humid areas such as Qatar. The large-scale, cost-effective commercialization of thermoelectric generators requires the processing and fabrication of nanostructured materials with quick, easy, and inexpensive techniques. Moreover, the methods should be replicable and reproducible, along with stability in terms of electrical, thermal, and mechanical properties of the TE material. This report summarizes and compares the up-to-date technologies available for batch production of the earth-abundant and ecofriendly materials along with some notorious works in this domain. We have also evaluated and assessed the pros and cons of each technique and its effect on the properties of the materials. The simplicity, time, and cost of each synthesis technique have also been discussed and compared with the conventional methods.
    DOI/handle
    http://dx.doi.org/10.3390/nano11051091
    http://hdl.handle.net/10576/31397
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video