• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection

    Thumbnail
    Date
    2012
    Author
    Boashash B.
    Ben-Jabeur T.
    Metadata
    Show full item record
    Abstract
    Prior to birth, fetus health can be monitored by the variety and scale of its movements. In addition, at birth, EEG signals are recorded from at-risk newborns. Studies have shown that both fetal movements and newborn EEGs are non-stationary signals. This paper aims to represent both newborn EEG and fetal movement signals in a time-frequency domain using a specifically designed time-frequency distribution (TFD) that is well adapted to these types of data for the purpose of analysis, detection and classification. The approach to design the quadratic TFDS is based on relating separable-kernel TFDS to DSP spectral window and digital filter design. To reach this goal, we compared recently proposed TFDs such as the Modified B distribution, a separable Gaussian distribution and the B distribution. Then, an extension of the modified B distribution(MBD) is proposed, referred to as the extended separable-kernel MBD. This new TFD uses a separable kernel based on an extension of the modified B kernel in both time and frequency domain with different windows for each domain. Simulation results are provided to compare the proposed Method with different TFDs and to assess its performance. The new TFD is then first applied to real fetal movement data recorded using accelerometers.
    DOI/handle
    http://dx.doi.org/10.1109/ISSPA.2012.6310574
    http://hdl.handle.net/10576/31934
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video