• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast and Scalable Synthesis of LiNi0.5Mn1.5O4 Cathode by Sol-Gel-Assisted Microwave Sintering

    Thumbnail
    View/Open
    Energy Tech - 2021 - Nisar - Fast and Scalable Synthesis of LiNi0 5Mn1 5O4 Cathode by Sol Gel‐Assisted Microwave Sintering.pdf (6.188Mb)
    Date
    2021
    Author
    Nisar, Umair
    Al-Hail, Sara Ahmad J. A.
    Kumar, Petla Ramesh
    Abraham, Jeffin James
    Mesallam, Saoud M. A.
    Shakoor, Rana Abdul
    Amin, Ruhul
    Essehli, Rachid
    Al-Qaradawi, Siham
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode material for high-energy-density and high-power-density lithium-ion batteries (LIBs). The high cost of the currently available LIBs needs to be addressed urgently for wide application in the transport sector (electric vehicles, buses) and large-scale energy storage systems (ESS). Of significance, herein, novel fast and scalable microwave-assisted synthesis of LNMO is reported, which leads to a production cost cut. X-ray diffraction (XRD) analysis confirms the formation of the desired phase with high crystallinity. Field emission scanning (FE-SEM) and transmission electron microscopy (TEM) analyses indicate that the synthesized phase is of nanometric size (50–150 nm) due to an extremely short sintering time (20 min). The material synthesized at 750 °C shows a higher initial discharge capacity (130 mA h g−1) than that synthesized at 650 °C (115 mA h g−1). The materials heat treated at higher temperatures show better electrochemical performance in terms of initial capacity, rate capability, and improved cycling. The improved electrochemical performance of LNMO at 750 °C is attributed to the formation of a stable crystal structure, low charge transfer resistance at the electrode/electrolyte interface, high electrical conductivity due to the presence of a disorder structure, and improved ionic diffusivity.
    DOI/handle
    http://dx.doi.org/10.1002/ente.202100085
    http://hdl.handle.net/10576/34826
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]
    • Chemistry & Earth Sciences [‎605‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video