• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploiting spectrum sensing data for key management

    Thumbnail
    Date
    2017
    Author
    Badawy, Ahmed
    Elfouly, Tarek
    Chiasserini, Carla-Fabiana
    Khattab, Tamer
    Trinchero, Daniele
    Metadata
    Show full item record
    Abstract
    In cognitive radio networks, secondary users (SUs) communicate on unused spectrum slots in the frequency bands assigned to primary users (PUs). Like any other wireless communication system, cognitive radio networks are exposed to physical layer attacks. In particular, we focus on two common attacks, namely, spectrum sensing data falsification and eavesdropping. Such attacks can be counteracted by using symmetric key algorithms, which however require a complex key management scheme. In this paper we propose a novel algorithm that significantly reduces the complexity of the management of symmetric link keys by leveraging spectrum sensing data that is available to all nodes. In our algorithm, it is assumed that a primary secret key is pre-distributed to the legitimate SUs, which is needed every number of detection cycles. With the aid of the information provided in the primary key, our algorithm manipulates the collected samples so that a segment of the estimated sensing statistic at the two legitimate SUs can be used as a seed to generate a common symmetric link key. The link key is then employed to encrypt the transmitted data. Our algorithm exhibits very good performance in terms of bit mismatch rate (BMR) between two link keys generated at the two legitimate SUs. In addition, our solution is robust against the difference in the received signal to noise ratio between two legitimate SUs thus making it suitable for practical scenarios. Furthermore, our algorithm exploits the decision statistic that SUs use for spectrum sensing, hence, it does require neither extra processing nor extra time, allowing the SUs to quickly and securely tab into empty spectrum slots. 2016 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.comcom.2016.10.008
    http://hdl.handle.net/10576/35660
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video