• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Location-Based Seeds Selection for Influence Blocking Maximization in Social Networks

    Thumbnail
    View/Open
    Location-Based_Seeds_Selection_for_Influence_Blocking_Maximization_in_Social_Networks.pdf (8.575Mb)
    Date
    2019
    Author
    Zhu, Wenlong
    Yang, Wu
    Xuan, Shichang
    Man, Dapeng
    Wang, Wei
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Influence blocking maximization (IBM) is a key problem for viral marketing in competitive social networks. Although the IBM problem has been extensively studied, existing works neglect the fact that the location information can play an important role in influence propagation. In this paper, we study the location-based seeds selection for IBM problem, which aims to find a positive seed set in a given query region to block the negative influence propagation in a given block region as much as possible. In order to overcome the low efficiency of the simulation-based greedy algorithm, we propose a heuristic algorithm IS-LSS and its improved version IS-LSS+, both of which are based on the maximum influence arborescence structure and Quadtree index, while IS-LSS+ further improves the efficiency of IS-LSS by using an upper bound method and Quadtree cell lists. The experimental results on real-world datasets demonstrate that our proposed algorithms are able to achieve matching blocking effect to the greedy algorithm as the increase in the number of positive seeds and often better than other heuristic algorithms, whereas they are four orders of magnitude faster than the greedy algorithm. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2900708
    http://hdl.handle.net/10576/36123
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video