• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Managing multitype capacity resources for frequency regulation in unit commitment integrated with large wind ramping

    Thumbnail
    Date
    2021
    Author
    Hemmati, Reza
    Mehrjerdi, Hasan
    Shafie-khah, Miadreza
    Siano, Pierluigi
    Catalão, João P. S.
    Metadata
    Show full item record
    Abstract
    An efficient unit commitment planning must consider frequency regulation capacity in the model. Such models are more complicated under a high penetration level of renewable energy because of renewable ramping and uncertainty. This paper addresses these issues in the unit commitment. The proposed model for unit commitment considers uncertainty and ramping of wind power, frequency regulation capacity, spinning reserve, demand response, and pumped-storage hydroelectricity. Two reserve capacities including primary frequency regulation and spinning reserve are designed to handle the intermittency and ramping of renewable energies. In order to optimize the costs, the pumped-storage hydroelectricity and demand response program are also included to deal with ramping and uncertainty. The numerical results specify that the arrangement of frequency regulation capacity, pumped-storage system and demand response can effectively tackle both the ramping and uncertainty. The system includes 10-generator with total power equal to 1070 MW and one wind generator with 300 MW power. The initial wind integration level is about 28%. It is verified that decreasing the frequency regulation capacity by 10% reduces wind integration level by 94%. The demand response and pumped-storage increase wind integration level by 10% and 16%; while both together increase wind integration by 25% compared to the initial level. The wind integration level without large wind ramping can be increased up to 200%. 2010-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TSTE.2020.3017231
    http://hdl.handle.net/10576/36333
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video