• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Practical implementation of residential load management system by considering vehicle-for-power transfer: Profit analysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Zare Oskouei, Morteza
    Mohammadi-Ivatloo, Behnam
    Abapour, Mehdi
    Anvari-Moghaddam, Amjad
    Mehrjerdi, Hasan
    Metadata
    Show full item record
    Abstract
    Nowadays with the development of smart appliances in the residential sector, home subscribers can play a key role in energy markets. These appliances in the form of responsive loads have a considerable impact on peak load demand. The use of responsive loads in the optimal coordination with plug-in hybrid electric vehicles (PHEVs) and renewable energy sources (RESs) is an evolved strategy to effectively implement demand response programs (DRPs). In this study, an energy-sharing framework in coordination with DRPs is proposed for residential buildings. The proposed structure seeks to achieve maximum profit for residential customers as well as to decrease the peak load demand by participating in DRPs. To this end, a novel ability of PHEV to share energy between the user's home and workplace is presented initially. The power transfer between the two areas by PHEV can help to manage the peak load demand and to increase customers' benefit, while it can be used as spinning reserve in peak intervals. Moreover, the proposed structure is designed based on the residential buildings' classification in terms of the buildings' daily activity schedule. In addition, the load management software under the Internet of Things (IoT) technology is constructed to manage smart appliances' behavior automatically. Analytical analysis is conducted on a sample residential customer load profile. Results show that the proposed method can effectively reduce peak load demand and electrical energy usage. 2020 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.scs.2020.102144
    http://hdl.handle.net/10576/36356
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video